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Abstract

Mathematical models can help predict the effectiveness of control measures on the spread of HIV and

other sexually transmitted diseases (STDs) by reducing the uncertainty in assessing the impact of inter-

vention strategies such as random screening and contact tracing. Even though contact tracing is one of the
most effective methods used for controlling treatable STDs, it is still a controversial strategy for controlling

HIV because of cost and confidentiality issues. To help estimate the effectiveness of these control measures,

we formulate two models with random screening and contact tracing based on the differential infectivity

(DI) model and the staged-progression (SP) model. We derive formulas for the reproductive numbers and

the endemic equilibria and compare the impact that random screening and contact tracing have in slowing

the epidemic in the two models. In the DI model the infected population is divided into groups according to

their infectiousness, and HIV is largely spread by a small, highly infectious, group of superspreaders. In this

model contact tracing is an effective approach to identifying the superspreaders and has a large effect in
slowing the epidemic. In the SP model every infected individual goes through a series of infection stages and

the virus is primarily spread by individuals in an initial highly infectious stage or in the late stages of the

disease. In this model random screening is more effective than for the DI model, and contact tracing is less

effective. Thus the effectiveness of the intervention strategy strongly depends on the underlying etiology of

the disease transmission.
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1. Introduction

Mathematical models based on the underlying transmission mechanisms of the disease can help
the medical/scientific community understand and anticipate the spread of an epidemic and
evaluate the potential effectiveness of different approaches for bringing an epidemic under control.
Models can be used to improve our understanding of the essential relationships between the social
and biological mechanisms that influence the spread of a disease. The relative influence of various
factors on the spread of the epidemic, as well as the sensitivity to parameter variation, can be
ascertained. Because the transmission dynamics form a complex non-linear dynamical system, the
behavior of the epidemic is a highly non-linear function of the parameter values and levels of
intervention strategies. This at times may even lead to changes in infection spread that are counter
to both intuition and simple extrapolated predictions. We can use the knowledge gained from
studying models to help set priorities in research, saving time, resources, and lives.
Screening is one of the most common strategies used to control the spread of HIV infection.

State health services provide anonymous or confidential screening to individuals who come in on a
voluntary basis, perhaps because they think they may have been exposed to HIV, or they are part
of a high risk group. Pregnant women are often screened for HIV infection. Infected individuals
are also identified when they donate blood, draw blood as part of a physical exam, or are tested
for HIV for other reasons. Models can be used to study the impact of such screening programs.
They can also be applied to study more costly contact tracing programs.
Contact tracing, also known as �partner notification by provider referral�, is one of the most

effective strategies for controlling treatable sexually transmitted diseases (STDs) such as syphilis
and gonorrhea. These programs ask infected individuals to identify other people whom they may
have infected or been infected by. Trained personnel then attempt to contact the named partners,
inform them that they had an infected partner, educate them, and provide them with opportu-
nities to be tested for the infection. If they are infected, they can begin treatment and stop
unknowingly spreading infection.
Although contact tracing has been used for years as an effective method for controlling curable

STDs, it remains controversial and hotly-debated as a strategy for controlling HIV. The ad-
vantages of identifying partners of those infected with HIV are not as clear as they are with easily
treated infections. However, the gravity of HIV infection and the magnitude of the epidemic make
it imperative that we understand the relative effectiveness of all possible control approaches.
Confidentiality issues, the cost of the program, and the likelihood that fewer people will come in

for testing are important considerations when deciding whether or not to implement contact-tracing.
Some specialists in the field argue that the potential for putting people at serious risk of ostracization
and even physical harm from others are not worth the potential gain. People are less likely to
voluntarily be tested when they are asked, or even required by law, to name their sexual partners.
This is of particular concern when there is a possibility of domestic violence [1,26,31]. Until recently,
very little could be done for HIV-infected people, and thus informing them of their infection was like
handing them a death sentence. Many health service workers were reluctant to do this.
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Other specialists in the field have argued that contact tracing is more effective than screening
programs, which often attract mostly the �worried well� who are not at high risk [5,18]. It is also
argued that the rights of those who have been exposed to know about their exposure, and the need
to stop the chain of infection, should supersede the rights of the infected to privacy [28]. The fact
that many studies have found that contact tracing is an effective strategy for finding and coun-
selling infected people [14,21,29,31] lends force to their argument. Another argument in favor of
contact tracing is that it can ‘‘delineate the risk networks hosting transmission and provide em-
piric estimates for mathematical model parameters’’ [23].
With today�s new treatments for HIV infection, some of the earlier arguments against contact

tracing have been partly eliminated. Although concerns still remain about decreased participation
in testing, and domestic violence, there are more and more reasons to identify infected people as
early in the course of infection as possible, to allow them to be promptly treated and to reduce the
chance that they will unknowingly transmit the disease.
While it seems likely that contact tracing could be as effective in controlling the spread of HIV

as it has been for other STDs, there are few analytical studies to estimate what fraction of the
population should be screened, what fraction of their partners should be contacted in order for
the program to have a significant effect on the spread of the epidemic, or how much the behavior
of this tested population needs to change. Scientists are beginning to develop models to study
these questions. Kretzchmar et al. [13] used simulations of the spread of gonorrhea and chlamydia
to study random screening and contact tracing, finding that, for their model, treatment of even a
small fraction of the partners of those with symptoms could completely halt the epidemic, whereas
screening of even large fractions of the population had little effect. Their model neglected
�snowballing�, the situation where not only the partners of the originally screened infecteds, but
also the partners of those partners, and so on, are traced, until no more infected individuals are
found. They also neglected the situation where a past partner of an infected individual was in-
fected by someone else either before or after their partnership. M€uuller et al. [20] incorporated
snowballing and infection of partners by others, and analytically studied contact tracing and
screening in a stochastic model of a simple SIRS (susceptible-infected-removed-susceptible) epi-
demic in a population of fixed size. They derived formulas for the reproductive number under
different assumptions for the stochastic model, and created a deterministic model with the same
reproductive number.
Here we use a different methodology to develop two models for HIV spread which include

contact tracing and random screening in populations with variable sizes. We develop the models
directly as differential equations, using approximations to estimate terms in our equations, rather
than attempting to derive them from a stochastic or simulation model. Differential equations
allow us to quickly obtain insights into the dynamics of the two models. As in [13], we neglect
snowballing, but, unlike [13], we do account for the possibility that partners of infecteds were
infected by someone other than the index case.
These models are extensions of the two models developed in detail in [8,9]. We have chosen

them specifically to address questions about whether or not contact tracing can be effective, given
that viral loads vary so much between individuals and within individuals over the course of their
infection. The differential infectivity (DI) model divides the infected population into groups ac-
cording to their infectiousness, and accounts for differences in rates of developing AIDS. In
contrast with the DI model, we also studied a simple version of a staged-progression (SP) model,
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in which every infected individual goes through the same series of stages. The parameters we use
for the SP model give a short, early, highly infectious, stage equivalent to the acute phase of
infection; a middle period of low infectiousness; and a late chronic stage with higher infectious-
ness. Thus the DI model captures individual differences and the SP model captures differences in
time within the same individual.
In [8,9] we simulated the transient dynamics and studied the sensitivity of both models using

parameters derived from the literature. We also developed a robust method for initializing mul-
tigroup epidemic models. For the SP model, these studies provided further insight into the ob-
servations in [11,12] that, when partner acquisition rates are high, the bulk of the infections early
in the epidemic are caused by those in the acute infectious stage. For the DI model, we showed
that a small number of individuals who are highly infectious during the chronic stage have a
disproportionate impact on the epidemic, even though they have a short life expectancy. Both
models were found to be very sensitive to the probability of transmission per contact and the
sexually active removal rate.
In this paper we first review the mathematical formulation of the original DI and SP models,

and then add terms to account for random screening and contact tracing. In developing these new
terms, we carefully justify our assumptions. We find reproductive numbers for both models, and
show that they have a unique endemic equilibrium which exists if and only if the epidemics are
above threshold. Then we analyze the models to assess the impact of intervention strategies. We
use numerical simulations to compare the impact of the strategies on the epidemic, and use our
analytical formulas for the reproductive numbers and the endemic equilibria to examine in more
detail the sensitivity of both models to the level of intervention strategy. Screening and changing
the behavior of 5% of the high-risk population every year significantly slows the epidemic for both
models, reducing the number of infections by more than a third. For the DI model, adding
contact tracing to the screening is an effective approach to identifying the superspreaders and
further slows the disease spread by a significant amount: when half of all partners can be found, it
drops the number of people infected well below half the number who would get infected with no
controls. For the SP model, contact tracing also drops the number of infections significantly, but
not as much as for the DI model. If the SP model holds, then it appears that contact tracing might
primarily identify individuals after they are past the most infectious stage, and it is possible that
public health might not be served by an expensive contact tracing program. However, if the DI
model is closer to the underlying disease etiology, then the epidemic can be significantly slowed if
the superspreader group can be identified and removed from the transmission network.
In deriving our models, we find that two of the factors we neglect are difficult to justify. We

finish this paper by estimating the size of one of these terms, and showing that it is small compared
to the terms we accounted for in the model. Then we give a formula for the other factor, and
arguments as to why it is reasonable to neglect it as well.

2. The differential infectivity and staged-progression models

Here we briefly describe the DI and SP models without random screening or contact tracing
and review the analysis for R0 and the endemic equilibrium [8,9]. The intervention strategies will
be added to these basic models in the next section.
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2.1. The differential infectivity model

During the chronic stage of infection, viral levels differ by orders of magnitude between indi-
viduals. Those with high viral loads in the chronic phase tend to progress rapidly to AIDS, while
those with low loads tend to progress slowly to AIDS [3,4,22,30]. The DI model accounts for the
distribution of times from infection to AIDS by assuming variations between individuals in their
duration of infection, dividing the infected population into n groups.
The equations for the DI model illustrated in Fig. 1 are

dS
dt

¼ lðS0 � SÞ � kS;

dIi
dt

¼ pikS � ðl þ miÞIi; i ¼ 1; . . . ; n;

dA
dt

¼
Xn

j¼1
mjIj � dA;

kðtÞ ¼
Xn

i¼1
kiðtÞ; kiðtÞ ¼ rbi

IiðtÞ
NðtÞ ;

ð2:1Þ

where NðtÞ ¼ SðtÞ þ
Pn

j¼1 IjðtÞ. Here S denotes the susceptibles, Ii denotes the number of infected
individuals in group i, and A denotes the number of infected individuals no longer transmitting
the disease. S0 is the constant steady state population maintained by the inflow and outflow when
no virus is present in the population. The total removal rate l accounts for both natural death
in the absence of HIV infection and people moving in and out of the sexually active suscepti-
ble population due to behavior changes or physical migration. kðtÞ is the rate of infection per

Fig. 1. The DI model divides the infected population into groups according to their infectiousness or differences in rates

of developing AIDS. In this model HIV is primarily spread by a small, highly infectious, group of superspreaders.
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susceptible, r is the partner acquisition rate, and bi is the probability of transmission per partner
from infected individuals in group i. Upon infection, an individual enters subgroup i with
probability pi, where

Pn
i¼1 pi ¼ 1, and stays in this group until becoming inactive in transmission.

Finally, mi is the rate at which infected individuals in group i enter group A, and d is the death rate
of people in group A. All infected individuals are assumed to eventually enter group A prior to
death due to their infection.

2.2. The staged-progression model

The viral burden during HIV infection varies as a function of time within an individual. Initially,
the HIV-1 RNA levels in plasma and serum can become extremely high during the first weeks of
acute primary infection, even before there is a detectable immune response [24,25]. These levels are
higher than at any other time during infection. Acute primary infection is followed by a chronic
phase during which the HIV RNA levels drop several orders of magnitude and remain at a nearly
constant level for years [7,22,30]. In the late chronic stages of an infection, the HIV-1 RNA levels
may increase as much as ten-fold [7] over what they have been during the rest of the chronic stage.
The SP model accounts for the temporal changes in the infectiousness of an individual by a staged
Markov process of n infected stages, progressing from the initial infection to AIDS.
The equations for the SP model illustrated in Fig. 2 are

dS
dt

¼ lðS0 � SÞ � kS;

dI1
dt

¼ kS � ðc1 þ lÞI1;

dIi
dt

¼ ci�1Ii�1 � ðci þ lÞIi; 26 i6 n;

dA
dt

¼ cnIn � dA;

kðtÞ ¼
Xn

i¼1
kiðtÞ; kiðtÞ ¼ rbi

IiðtÞ
NðtÞ ;

ð2:2Þ

where now Ii is the number of infected individuals in each infected stage. Note that all individuals
go into group 1 upon infection. ci is the rate at which individuals move from stage i of infection to
stage iþ 1. The meanings of S0, l, r, and d are the same as in the DI model, and bi is the
probability of transmission per partner from infected individuals in stage i. Previous studies of SP
models can be found in [2,10–12,15–17].

Fig. 2. In the SP model every infected individual goes through the same series of stages. This model can account for a

short early highly infectious stage equivalent to the acute phase of infection, a middle period of low infectiousness, and

a late chronic stage with higher infectiousness.
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2.3. Transmission probability

The parameter r enters the model both as a multiplicative factor and through the dependence of
the transmission probabilities per partner, bi, on the average number of contacts per partner, c,
which in turn depends on the number of contacts per partner (c ¼ cðrÞ).
If fi is the transmission probability per contact in group i, the probability that a susceptible

individual will not be infected by a single contact with an infected individual is 1� fi. Hence the
probability that a susceptible individual will avoid infection when they have cðrÞ contacts with an
infected partner is ð1� fiÞcðrÞ, and the probability of transmission per partner from an infected
person in group i is

bi ¼ 1� ð1� fiÞcðrÞ: ð2:3Þ
Our choice for cðrÞ ¼ 104r�g þ 1 in Section 5 gives approximately two contacts per week for

people with one partner per year, and decreases to about one contact per partner as r gets large
[9]. The parameter g controls how fast this function decreases. In the simulations presented in
Section 5, we set g ¼ 1.
Let �ssi be the mean duration of infection in group i. Then, for the DI model, �ssi ¼ 1=ðl þ miÞ, and

for the SP model, �ssi ¼ 1=ðl þ ciÞ. The mean duration of infection for the whole population for the
DI model and SP model are given by �ss ¼

Pn
i¼1 pi�ssi and

Pn
i¼1 qi�ssi, respectively, where qi is defined

as in Table 1. Based on these notations, the mean transmission probability per contact �ff for the DI
and SP models are

�ffD ¼
Xn

i¼1
pi
�ssi

�ss
fi; �ffS ¼

Xn

i¼1
qi
�ssi

�ss
fi: ð2:4Þ

Table 1

Reproductive number R0, mean duration of infection in group i, �ssi, mean duration of infection for the whole population

�ss, mean transmission probability �bb, equilibrium infection rate k�, susceptible population S�, equilibrium infected group

population I�i , equilibrium total infected population I�T , and equilibrium relative impact q�
i for both models

Name DI Model SP Model

R0 r�ss�bb r�ss�bb

�ssi
1

lþmi

1

l þ ci

�ss
Pn

i¼1 pi�ssi
Pn

i¼1 qi�ssi

�bb
Pn

i¼1 pibi�ssi=�ss
Pn

i¼1 qibi�ssi=�ss

qi Undefined
Qi�1

j¼1 cj�ssj

S� lS0

lþk�
lS0

lþk�

I�i pi�ssiS�k� qi�ssiS�k�

I�T S�ðR0 � 1Þ S�ðR0 � 1Þ

k� R0 � 1
�ss

R0 � 1
�ss

q�
i

pibi�ssi

�bb�ss

qibi�ssi

�bb�ss
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2.4. The reproductive number and endemic equilibrium

We proved in [8] that both of these models have two equilibria: the infection-free equilibrium
(given by S ¼ S0; Ii ¼ 0), and the endemic equilibrium (given by S ¼ S� > 0; Ii ¼ I�i > 0). The
endemic equilibrium is the asymptotic distribution of the infection in the population once the
initial transients have settled down. Analyzing the stability of the infection-free equilibrium gives
the reproductive number, which specifies the conditions under which the number of HIV infected
individuals will initially increase or decrease when there are a small number of them at the start.
The reproductive number, R0 is defined such that if R0 < 1 the modeled epidemic dies out and if
R0 > 1 the epidemic spreads [6]. The reproductive number is obtained by investigating the stability
of the infection-free equilibrium at which the components of infected groups are zero. If R0 < 1,
this infection-free equilibrium is the unique equilibrium. If R0 > 1, the infection-free equilibrium
becomes unstable and there appears, for both models, a unique endemic equilibrium at which the
components of infected groups are positive.
The reproductive number can be written

R0 ¼ r�ss�bb ð2:5Þ
for both models. Here �ss is the mean duration of infection, and �bb is the mean probability of
transmission per partner. We also found formulas for the endemic equilibrium, and proved that
there exists a non-trivial equilibrium if and only if the reproductive number R0 is greater than 1. If
the endemic equilibrium exists, it is always locally asymptotically stable. The formulas for all of
these quantities are given in Table 1.
The relative importance of each infection group in maintaining the chain of transmission is

measured by the relative fraction of individuals being infected by each group. The relative impact

of Ii on the rate of infection is

qiðtÞ ¼
kiðtÞ
kðtÞ ¼ biIiðtÞPn

j¼1 bjIjðtÞ
: ð2:6Þ

Note that the formulas for the DI and SP models in Table 1 have the same form, with pi and mi

from the DI model being replaced by qi and ci for the SP model formulas. However, while it could
be argued that mi and ci are both progression rates and thus play similar roles in both models, qi is
quite different from pi. Not only is qi a derivative quantity, but also q1 ¼ 1 so that the sum of the qi

is larger than one, while the pi sum to one. The similarity of formulas can be deceptive in making
the models appear more similar than they are.

3. Random screening and contact tracing models

In this section we modify the DI and SP models to account for two types of control programs.
The first type, random screening, tests broad sectors of the population for HIV infection. Random
screening programs include the screening and notification of blood donors and pregnant women,
and anonymous or confidential testing sites. People come to these sites somewhat at random,
either to donate blood or because they believe they may be at risk for HIV infection. In all of these
cases, when people are identified as infected, they are counselled about risk behaviors. We assume
that these programs test and counsel the population at a rate e.
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Once infected people who know of their infection status have gone through a counselling
program, they have a wide variety of reactions. Ideally, all of them would either abstain from sex,
or use condoms with all partners. However, unfortunately, this has not been found to be the case
[19]. Some people change behaviors dramatically and some do not change much at all. Accounting
for the many nuances of behavior change, such as a decrease in the number of partners versus a
shift to condom use, is beyond the scope of this model. We assume that a fraction, j, of the
counselled population leaves the high risk population, and the behavior of the remaining fraction,
1� j, remains unchanged. Because r :¼ je is small, we neglect the fact that those who have al-
ready been tested by random screening are unlikely to be tested again, and lump these people back
in with the general infected population.
We assume that the rate, e, that someone is identified as infected by random sampling, and the

fraction, j, of these people who change their behavior are homogeneous in the population and
remain constant over time. Thus we subtract a term jeIi ¼ rIi from the equation for the infected
group, Ii, and add it into the equation for a new group, ICi , the tested and counselled infected
people who have changed behavior. Because some of the partners of the infected and screened
people will also become part of ICi , for clarity in what follows we refer to the infected people found
via screening as the screened infecteds.

The second type of program we model is active contact tracing. These HIV-control programs
operate on top of screening programs. When infected people have been identified by a screening
program, they are asked to identify their partners for the past TA years, where, in most programs
described in the literature, TA is between six months and a year. A fraction f of those past partners
are named, located, tested for HIV infection, and counselled.
In this initial model we neglect �snowballing�. If we call people who are named by screened

infecteds, tested and found to also be infected, level two traced infecteds, then snowballing occurs
when level two traced infecteds are asked to name partners, and those partners are traced and
tested. We can call the people who have been found to be infected because they were contacts of
level two traced infecteds level three traced infecteds. With snowballing, partners of level three
traced infecteds are also traced, possibly yielding some level four traced infecteds, and the chain is
followed until no more infected people are found. Thus, by neglecting snowballing, we do not
account for traced infecteds at level three and beyond.
We justify this because the data reported in the literature seems to indicate that the number of

infected people found through snowballing in the typical contact-tracing program is small com-
pared to the number of infected people found who are direct partners of screened infecteds. For
example, in [14], only 46% of those eligible to participate in the study agreed to do so, and named
partners. Only half of their named partners were located, implying that at most 23% of eligible
people�s partners were contacted. If this contacted group were similar to those participating in the
study, about 46% of them would agree to be tested, implying that about 11% of level two partners
would be tested. Because infection levels are usually less than 50% of any population, most of the
ones who did agree to be tested would not be found to be infected. If we have a population which
averages five partners over the period in question, we are thus talking about finding at most (at
50% infection rates) around one level two traced infected for every four screened infecteds.
Snowballing occurs when the contact tracing program goes to the next level: infected people

from level two name partners and some of them are also found to be infected. The impact of these
terms is multiplicative and multiplying the small factors together results in an even smaller effect.
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When the snowballing is expanded to level three, there is only an average of one level three traced
infected for every sixteen screened infecteds. Thus, in this situation, including snowballing would
not dramatically change our predictions.
This would not be the case if we wished to model aggressive contact tracing programs, where

most of the people traced through networks are located, such as in the program described in [31].
In such a situation, the multiplicative factors become larger and snowballing can be an important
factor. The models we consider could be easily modified to account for a small snowballing effect
by assuming that the same fraction of partners of the identified infected partner are infected as in
the original index case. We have not included this factor in the current model, and therefore our
estimates on the impact of contact tracing slightly underestimate the full impact of a compre-
hensive program.
The rate that the active contact tracing program identifies infected people who were sexual

contacts of screened infecteds from group i is the rate that infecteds are screened, eIiðtÞ, times the
fraction of their partners who can be named, located, and tested, f, times the number of partners
that they had during the time period ðt � TM; tÞ who are infected at time t, Ci. Here we define TM to
be the minimum of the time period TA that they are asked about, and the time period for which
they can recall information such as names and how to locate them, since this is a highly active
population, where individuals may not be able to give accurate information about partners for
very long periods of time.
We assume that none of these partners have already been identified as being infected or have

left the population due to death or AIDS. Then, since the same fraction, j, of these identified
infecteds will change behaviors as in the screening program, we remove infecteds from the pop-
ulation at the increased rate frCi. This assumption is valid when r, l, and the rates of developing

Fig. 3. The SCT-DI model with random screening and contact tracing differs from the original DI model in Fig. 1 in

that it includes a new category of infected individuals, ICi , who have been identified as infected and are no longer

spreading the virus.
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AIDS are all small, so that the possibility the partner has left the high-risk population before
being located is small.
The number of infected partners, Ci, is the sum of three terms: Li, Mi, and Oi. Li is the average

number of people a screened infected, who was in group Ii at the time of screening, contacted in
the past TM years who were already infected before the contact. Mi is the average number of
partners of this screened infected in the past TM years who (1) were not infected at the time of their
contact and who (2) were infected through this contact. Oi is the average number of partners of
the screened infected in this time period who (1) were not infected at the time of the contact; (2)
were not infected by the screened infected; and (3) became infected by time t.
We estimate these three terms by assuming TM is small compared to l�1, either because activity

levels are high, and therefore people can only identify their past partners and provide contact
information (such as phone numbers) for a short period of time, or because they are not asked
about a long time period. For example, the index cases in [14] were asked to name partners in the
past year, which is short compared to the average time l�1 a person stays in the high risk group.
The equations for the random screening and contact tracing DI model (SCT-DI model)

illustrated in Fig. 3 are

dS
dt

¼ lðS0 � SÞ � kS;

dIi
dt

¼ pikS � ðl þ mi þ r þ frCiÞIi; i ¼ 1; . . . ; n;

dICi

dt
¼ �ðl þ miÞICi þ ðr þ frCiÞIi; i ¼ 1; . . . ; n;

kðtÞ ¼
Xn

i¼1
kiðtÞ ¼

Xn

i¼1
rbi

IiðtÞ
NðtÞ ;

ð3:1Þ

where NðtÞ ¼ SðtÞ þ IðtÞ, IðtÞ ¼
Pn

i¼1 IiðtÞ, does not include the identified infected people, and
CiðtÞ ¼ LiðtÞ þ MiðtÞ þ OiðtÞ. We leave out the equation for the A group because we assume that
they are no longer active and hence play no role in the transmission dynamics of HIV in the model.

Fig. 4. The SCT-SP model with random screening and contact tracing differs from the original SP model in Fig. 2 in that it

includes a new category of infected individuals who have been identified as infected and are no longer spreading the virus.
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The equations for the random screening and contact tracing SP model (SCT-SP Model) il-
lustrated in Fig. 4 are

dS
dt

¼ lðS0 � SÞ � kS;

dI1
dt

¼ kS � ðc1 þ l þ r þ frCiÞI1;

dIi
dt

¼ ci�1Ii�1 � ðci þ l þ r þ frCiÞIi; 26 i6 n;

dIC1
dt

¼ �ðc1 þ lÞIC1 þ ðr þ frC1ÞI1;

dICi

dt
¼ ci�1ICi�1 � ðci þ lÞICi þ ðr þ frCiÞIi; 26 i6 n;

kðtÞ ¼
Xn

i¼1
kiðtÞ ¼

Xn

i¼1
rbi

IiðtÞ
NðtÞ ;

ð3:2Þ

where NðtÞ ¼ SðtÞ þ IðtÞ, IðtÞ ¼
Pn

i¼1 IiðtÞ, does not include the identified infected people, and
CiðtÞ ¼ LiðtÞ þMiðtÞ þ OiðtÞ. We once again leave out the equation for A.
Notice that in both models the total number of infected people become the total number of

unidentified infected people, IðtÞ ¼
Pn

i¼1 IiðtÞ, and that the total active population now is NðtÞ ¼
SðtÞ þ IðtÞ, with ICi removed.

3.1. Estimation of Li(t)

Next we estimate the average number of previously infected partners of a screened infected, Li,
for both models. Let Ti;totðtÞ be the average number of years that an infected person from group i
has been in the high risk population at time t. Because we assume that a person cannot have any
contacts with an infected person before they enter the high risk population, a screened infected
can name partners only for whichever is shorter: the time they have been in the high risk pop-
ulation, or TM. Let bTTiðtÞ ¼ minfTM; Ti;totðtÞg. Then the average number of previously infected
partners this individual has had in the past TM years is

LiðtÞ ¼ r
Z t

t�bTTiðtÞ

IðsÞ
NðsÞ ds: ð3:3Þ

To calculate this quantity exactly requires that we can estimate Ti;totðtÞ, and the integral of I=N .
Estimating Ti;totðtÞ also requires an integral over the past. However, integrals over the past greatly
complicate a differential equation model, turning it into an integro-differential equation model. To
avoid this, we observe that if the spread of HIV is not extremely rapid, an infected person will
have been in the high risk population for quite a while prior to infection. With this assumption, we
observe that, since Ti;totðtÞ is the sum of the time spent as a susceptible and the time spent as an
infected, it is close in magnitude to 1=l. Because we have assumed that TM is small compared to
1=l, then bTTiðtÞ ¼ TM for all i.
When HIV is not spreading extremely rapidly, then for small TM, the above integral for Li is

over a relatively small time interval, ðt � TM; tÞ. It therefore is reasonable to approximate NðsÞ and
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IðsÞ by their values at time t during this small time interval. Thus we estimate LiðtÞ for both models
as

LiðtÞ ¼
rTMIðtÞ
NðtÞ : ð3:4Þ

Note that LiðtÞ is independent of i. This approximation greatly simplifies both the models and the
calculation of their reproductive numbers.

3.2. Estimation of MiðtÞ

The procedure for estimating the average number of partners infected by the identified, infected
individual, Mi, is different for the SCT-DI and SCT-SP models.

3.2.1. MiðtÞ for the SCT-DI model
Let TiðtÞ be the mean time that an infected person in group Ii has been in that group. We

approximate this as one over the rate at which people leave group i, l þ mi þ r þ frCiðtÞ. This
estimate will be most appropriate when the infected population is changing slowly, so that the
mean time is close to the inverse rate. (Note that if this rate were a constant, this inverse would be
both the mean time that people stay in group Ii as well as the mean time that people in group Ii
have been in the group when the population is at equilibrium.) In order to develop a model for
which we can find an equilibrium, we approximate CiðtÞ in our estimate of TiðtÞ by its value at the
infection-free equilibrium, C0i :

TiðtÞ 	 �ss0i ¼
1

l þ mi þ r þ frC0i
: ð3:5Þ

Note that an exact expression for Ti would require adding another variable, the time since entering
group i, to our model. This would lead us to a set of integro-partial differential equations. Not
only would that greatly complicate the mathematics involved, it would also require the specifi-
cation of a distribution of the population with duration of infection at the initial time. Because Ti

early in the simulations would depend entirely upon this initial distribution, these initial condi-
tions could introduce unintended effects. While setting Ti to its equilibrium value introduces a
small error in the early stages of the epidemic, it greatly simplifies the model formulation and
analysis.
Let eTTiðtÞ ¼ minfTM; TiðtÞg. Then the average number of people that this infected person has

infected is

MiðtÞ ¼ rbi

Z t

t�eTTiðtÞ

SðsÞ
NðsÞ ds:

As above, if we make the simplifying assumption that S and N have been at their values of time
t for the length of time eTTiðtÞ, then for the SCT-DI model,

MiðtÞ 	
reTTibiSðtÞ

NðtÞ : ð3:6Þ
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Defining ai ¼ bi
eTTi allows us to split this into a part which depends upon i and is independent of

time and a part which is independent of i and dependent on time:

MiðtÞ 	
rSðtÞ
NðtÞ ai: ð3:7Þ

3.2.2. MiðtÞ for the SCT-SP model
For the SCT-SP model, an exact expression forMi is given by integrating over the past as above

with the SCT-DI model, except that the value for bi now depends on the group the infected was in
at the past time, s. Writing this as bðsÞ, we have

MiðtÞ ¼ r
Z t

t�eTTiðtÞ

bðsÞSðsÞ
NðsÞ ds:

As before, we approximate the populations by their time t values, and the mean time a person who
is in group Ii has been in that group, Ti, by

Ti 	 �ss0i ¼
1

l þ ci þ r þ frC0i
: ð3:8Þ

Then we can write MiðtÞ in the same form as for the DI model:

MiðtÞ ¼
rSðtÞ
NðtÞ ai;

where

ai ¼
Z t

t�eTTiðtÞ
bðsÞds:

The estimation of ai is different for different groups. For group 1, people have the same bi for
the whole time they have been infected. Thus

a1 ¼ b1eTT1;
where eTT1 ¼ minfTM; �ss01g.
For the remaining groups (i > 1), the infectivity varies over the duration of their infection.

Because we assume that people can identify a fraction of their partners for the past TM years, we
can convert this time for people in the infected group Ii to the index JðiÞ of the earliest infected
group that an infected person in Ii was in when they may have infected another person, where
i > 1 and JðiÞ6 i. That is, a person in Ii can identify past partners while they were in groups Ij
where j 2 ½JðiÞ; i�. For example, if i is 3 and Jð3Þ ¼ 2, people in group I3 can identify partners from
the time when they were in group I2, but they cannot identify partners from the times prior to
entering group I2.
Define Tk;inf to be the average length of time period that people in group Ik have been infected,

and T �
k to be the average length of time period that those people entering group Ikþ1 from Ik have

been infected. Because these people have survived to the kth group and are still in the active
population, we do not include the removal rate, l þ r, when estimating T �

k . Defining

gi;j ¼
Xj

l¼i

1

cl
; and Gj;i ¼ �ss0i þ gj;i�1;
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we approximate

T �
k ¼ g1;k;

Tk;inf ¼ G1;k:

The index JðiÞ is determined by TM and Ti;inf . That is, JðiÞ is the index of the group for which
Ti;inf � T �

JðiÞ < TM6 Ti;inf � T �
JðiÞ�1;

or more specifically,

GJðiÞþ1;i < TM6GJðiÞ;i: ð3:9Þ
There are three possible cases.

Case 1. JðiÞ ¼ i and TM6 �ss0i .
In this case, the average infected person arrived in their current infected group so long ago that

they cannot identify partners they had while they were in a previous group. For this case we use
the estimate

ai 	 TMbi: ð3:10Þ
Case 2. 16 JðiÞ < i.
In this case, TM is longer than the time people have been in group Ii, but shorter than the time

they have been infected. The average time they have been in group Ii is �ss0i , in group i� 1 is 1=ci�1,
and so on until in group IJðiÞ, where they only recall partners for the amount of time

tMJðiÞ ¼ TM � GJðiÞþ1;i ¼ ðTM � �ss0i Þ �
XI�1

l¼JðiÞþ1

1

cl
:

Hence

ai 	 bJðiÞtMJðiÞ þ
Xi�1

k¼JðiÞþ1

bk

ck
þ bi�ss

0
i : ð3:11Þ

Case 3. JðiÞ ¼ 0.
In this case, TM is longer than the time the infected people have been infected. The identified

infected individuals can identify all of the partners since they have been infected. As a result,

ai 	
Xi�1
k¼1

bk

ck
þ bi�ss

0
i : ð3:12Þ

3.3. Estimation of Oi

For this first version of the model we neglect Oi in both models. The Oi people are those who
are named as partners of infected people in the past TM years, and became infected after that
partnership. We estimate this term in Section 7, and show it is relatively small compared to Li and
Mi for the parameter ranges of interest. We justify neglecting this term by assuming that the rate
of infection in the population is low enough, and the time period TM is small enough, that the
chances a person would contact an infected person and become infected after their contact with
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the known infected is small compared to their chances of being infected by the infected they are
known to have contacted. There may be situations outside of our parameter ranges where our
assumptions are not valid, and these terms need to be included, but they are not examined in this
paper.

4. The reproductive number and endemic equilibrium

We now summarize the results for both the reproductive number and the endemic equilibrium
for the SCT-DI model and the SCT-SP model in this section. The details can be found in Ap-
pendices A and B. In the numerical results section we will use these results to examine the be-
havior and sensitivity of our two models.

4.1. The reproductive number

The reproductive number for the SCT-DI model is given by

RD0 ¼ r
Xn

i¼1
pibis

0
i ; ð4:1Þ

where s0i ¼ 1=ðl þ mi þ r þ frC0i Þ.
Similarly, the reproductive number for the SCT-SP model has the same form as for the model

without control measures:

RS0 ¼ r
Xn

i¼1
qibis

0
i ; ð4:2Þ

where we define

qi :¼
Yi�1
j¼1

cjs
0
i ; ð4:3Þ

s0i ¼ 1=ðl þ cj þ r þ frM0
j Þ, and M0

i is Mi evaluated at the infection-free equilibrium.
Note that in order to numerically determine the reproductive number for the SCT-SP model we

need to first determine M0
i . Recall that there are three different possible cases for these Mi. Hence

we need to be careful when we evaluate them using the appropriate formula for the ith group. In
Appendix A, we explicitly give RS

0 and qi for some specific cases of Mi.
The partial derivatives of the reproductive numbers with respect to the rate of random

screening, r, and the fraction of identified partners contact traced, f, are given by

oRD0
or

¼ �r
Xn

i¼1
pibiðs0i Þ

2
1
�

þ freTTibi

	
;

oRS0
or

¼ �r
Xn

i¼1
qibis

0
i

Xi

j¼1
ð1

 
þ fM0

j Þs0j

!
;

ð4:4Þ
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and

oRD0
of

¼ �r
Xn

i¼1
pibiðs0i Þ

2 reTTibir
� 	

;

oRS0
of

¼ �r
Xn

i¼1
qibis

0
i

Xi

j¼1
M0

j rs0j

 !
:

ð4:5Þ

All these derivatives are negative. Hence, both a pure random screening program (with f ¼ 0) and
any contact tracing program will reduce the reproductive number of the epidemic, and thus most
likely reduce the severity of the epidemic. The more people are screened (the greater r is), and the
more partners people can recall or more accurate information people give (the greater f is), the
more R0 will be reduced for both models. A large enough screening rate and partner recall will
reduce R0 below the threshold.
Notice that contact tracing has a different impact on the reproductive number, and hence on the

transmission dynamics, for the SCT-DI model than the SCT-SP model. It is clear from (4.4) and
(4.5) that how contact tracing can reduce R0 for the SCT-DI model. However, the contact tracing
for the SCT-SP model depends on not only the time period that identified infected people can
identify their partners back to but also how long they have been infected, which determines how
many infected partners they have had.

4.2. The endemic equilibrium

For the SCT-DI Model, the endemic equilibrium is given by

S� ¼ lGðx̂xÞ
lGðx̂xÞ þ F ðx̂xÞ � 1 S

0; ð4:6Þ

I�i ¼ lpiðF ðx̂xÞ � 1Þ
ðai þ bix̂xÞðlGðx̂xÞ þ F ðx̂xÞ � 1Þ S

0; ð4:7Þ

where

Gðx̂xÞ :¼
Xn

i¼1

pi

ai þ bix̂x
; F ðx̂xÞ :¼ r

Xn

i¼1

bipi

ai þ bix̂x
;

and x̂x is the (unique) root of the equation HDðxÞ ¼ 1. Here HDðxÞ is defined by

HDðxÞ ¼ r
Xn

i¼1

bipi
ai
x þ bi

; ð4:8Þ

with

ai ¼ l þ mi þ r þ rfrTM; bi ¼ frrðeTTibi � TMÞ:
For the SCT-SP model, the endemic equilibrium is given by

I�n ¼ lS0

l

Pn

i¼1

Qn

j¼iþ1
AjþBj~xxð Þ

1=~xx�1 þ
Qn

j¼1 Aj þ Bj~xx
� 	�  ; ð4:9Þ
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I�i ¼
Yn
j¼iþ1

Aj

�
þ Bj~xx

	
I�n ; i ¼ 1; . . . ; n� 1; ð4:10Þ

S� ¼
Pn

i¼1
Qn

j¼iþ1 Aj þ Bj~xx
� 	

1=~xx� 1 I�n ; ð4:11Þ

where ~xx is the unique root of the algebraic equation

HSðxÞ ¼ rx
Xn

i¼1

biQi
j¼1ðAj þ BjxÞ

� 1; ð4:12Þ

Ai ¼ ðci þ l þ r þ frrTMÞ=ci�1; Bi ¼ frrðJMi � TMÞ=ci�1;

with c0 ¼ 1 and JMi determined from equations (3.10), (3.11) and (3.12). That is

JMi ¼
biTM; if JðiÞ ¼ iand TM6 �ssi;

bJðiÞtMJðiÞ þ
Pi�1

k¼JðiÞþ1
bk
ck
þ bi�ssi; if 16 JðiÞ < i;Pi�1

k¼1
bk
ck
þ bi�ssi; if JðiÞ ¼ 0:

8><>: ð4:13Þ

The details can be found in Appendix B.

5. Numerical investigation of the models

Tables 2 and 3 give the parameter values we use for the original basic DI and SP models. We
estimated these parameters in [8,9] from the published literature. Here we use the baseline pa-
rameters given in [9], which ensure that the two models have the same value of �ss, and nearly
identical values for R0 and �bb. Thus they have nearly identical endemic states, because the sensi-
tivity of the models to the intervention programs can be better compared if these values are the
same in the absence of any intervention program (r ¼ 0).
Because we are considering a high risk population, we assume that individuals realize they are

at risk and are much more likely to come in for testing than in the general population, and that
they are reasonably likely to change behaviors. We define the screening rate r as the product of
the fraction screened per year (e) and the fraction who change behaviors (j). In our simulations,
we use a 5% average as a baseline screening rate per year (r ¼ 0:05), and study the sensitivity of
the model to screening rates between 0 and 20%. We take TM ¼ 1 year. This value is consistent
with many contact tracing programs, although six months is also a common look-back time span.
We study the sensitivity of the model to variations in TM between 0 and 2 years. In active pop-
ulations, the fraction of partners named, located, and screened varies widely. Some programs
seem to have no difficulty locating partners, but find many of them reluctant to be tested. Other
programs have more difficulty locating partners, and less difficulty getting them to be tested [18].
For our simulations we assume that half of all partners from the past TM years will be tested
(f ¼ 0:5), and study the sensitivity of the models to variations in f since some studies cited in [18]
were more successful (f > 0:5), but others did worse. In none of these studies is there a way to
evaluate the fraction of their partners that individuals actually named, because it would be very
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difficult to determine how good high risk people�s memories are when it comes to recalling their
sexual partners, or how often they deliberately leave someone off their list.

Table 2

These parameters were chosen based on the studies and calculations cited in the text

Basic parameter Formula Value

Sexually active removal rate a 0.05 yrs�1

Natural death rate d 0.02 yrs�1

Mean duration of infection (when a ¼ 0 in the DI model) �ss 12 years

Partner acquisition rate r 5 partners/yr

Contacts per partner parameter g 1.0

Initial population size Nð0Þ S0

Initial infected population IT ð0Þ 0.01 S0

Normalized infection-free equilibrium S0 1

DI parameters

Distribution of the newly infected p (0.05, 0.33, 0.5, 0.12)

Progression rates by group m (0.19, 0.096, 0.058,

0.028) yrs�1

Relative per contact transmission f (103, 102, 10, 1) zD

Infectivity adjustment factor zD 5:1 10�5

SP parameters

Progression rates by group c (13.0, 0.23553,

0.23553, 0.47) yrs�1

Relative per contact transmission f (100, 1, 1, 10) zS

Infectivity adjustment factor zS 9:08 10�4

Note that these models allow the population to be normalized such that S0 ¼ 1.

Table 3

Derived parameters

Description Formula Baseline value

Duration of infection �ss 7.3 yrs

Mean probability of transmission per contact �ff 0.003

Number of contacts per partner cðr ¼ 5Þ 21.8 contacts per

partner

DI parameters

Probability of transmission per partner b (0.68, 0.105, 0.011,

0.0011)

Mean probability of transmission per partner �bb 0.053

Reproductive number R0 1.93

SP parameters

Probability of transmission per contact b (0.87, 0.0196, 0.0196,

0.1802)

Mean probability of transmission per contact �bb 0.051

Reproductive number R0 1.88

These parameters are derived from the parameters given in Table 2.
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Estimates of the mean probability of infection per contact, �ff, range from 0.0003 (lowest value
estimated for female-to-male transmission) to 0.08 (highest value estimated for male-to-male
transmission) [27]. Here we use �ff ¼ 0:003 at baseline.
In this section, we investigate the effectiveness of these simple random screening and contact

tracing programs for three levels of interventions: none, random screening only, and random
screening plus contact tracing. Next, we use the analytical formulas for R0 to analyze the sensi-
tivity of the early epidemic to different levels of intervention programs by varying r, f, and TM. We
then examine the sensitivity of the long-term epidemic to these three parameters. Finally, we
investigate the impact of our approximations for the SCT-SP contact tracing model on the
smoothness of R0 and the endemic equilibrium.
The impact of these interventions on the SCT-DI and SCT-SP epidemics shows how the ef-

fectiveness of the intervention strategy depends on the underlying etiology of the disease trans-
mission. These simulations confirm that contact tracing is more effective when there are core
groups which are transmitting the majority of the infections (as in the SCT-DI model) than when
a large fraction of the infections are spread by those who have just been infected (as in the SCT-SP
model). Contact tracing is less effective in the SCT-SP model, because the largest fraction of
infections in our simulations is caused by those who have been infected the longest, and contact
tracing may be too late in identifying these individuals. It is also interesting that, while contact
tracing would appear to be an effective approach to reducing the overall spread of infection in the
SCT-DI model, the relative importance of the most infectious group to the spread of the infection
remains the same as it was without the contact tracing. We conclude that if the impact of the
intervention program depends on the underlying etiology of the infection, this etiology must be
understood in order to design the cost-effective intervention programs.
The timing of a multigroup model epidemic is extremely sensitive to the initial distribution of

the infected population. The initial conditions should also be consistent with the assumptions
used to define the quantity Mi þ Li in the contact tracing model. We defined the initial distri-
bution of the 1% infected population using the Numerical Preinitialization Procedure described in
[9]. This distribution is defined to simulate the behavior of a naturally occurring epidemic, and
to minimize the initial transients created by artificial initial conditions. First, a tiny fraction
(0.01%) of the population is distributed among the infected groups based on the relative fraction
of time when an individual is in a particular group. That is, the Ii is initialized with 0.0001
S0�ssi=�ss, where �ssi is the duration of infection of infected individuals in group i. The model is then
advanced forward in time until 1% of the population has become infected. At that time, the total
population is renormalized to equal S0 and the time is renormalized for this point to be t ¼ 0.
The Iið0Þ are given the same relative distribution as they had when the simulation is stopped, and
their sum is set to 0.01 S0. This approach is an approximation of the natural initial conditions
that would occur if a very small number of infected people were initially introduced into the
population. It also sets up initial conditions which are consistent with the contact tracing terms
in the models.

5.1. Transient dynamics of the models

The impact of random screening and contact tracing on the transient dynamics can be seen in
Fig. 5. In the first simulation (solid lines), there is no intervention, and all parameters are at the
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baseline values in Table 2. In the second simulation (dash–dot lines), there is screening of 5% of
the active population and no contact-tracing. In the third simulation (dash lines), contact tracing
is added to the 5% screening program, with TM ¼ 1 and f ¼ 0:5.
In the SCT-DI model there is a significant impact from screening alone. Furthermore, a modest

amount of contact tracing added to this screening program leads to another large reduction in the
epidemic. The lower plots show the relative impact, qi, defined as the fraction of infections caused

Fig. 5. The solid lines plot the susceptible and infected populations when there is no screening or contact tracing, the

dash-dot lines are for the epidemics when 5% of the population is screened, and there is no contact tracing, and the

dashed lines show what happens when contact tracing is added to the the random screening model with TM ¼ 1 year and
f ¼ 0:5. The upper figures show the susceptible and infected populations for these three cases for each model. In the
original model runs, the DI epidemic is larger than the SP epidemic, despite having similar R0 and endemic states. In
the upper left figure, random screening has a modest impact in slowing the SCT-DI model epidemic when compared to

the more dramatic impact of contact tracing. In the upper right figure, random screening alone has more impact on the

SCT-SP model than the SCT-DI model. However, contact tracing has less impact on the SCT-SP model epidemic, so

that the combined programs are about equally effective for the two models. The lower two figures show the relative

impact, qi, (see Eq. (2.6)), for each of the two models, for the baseline and contact tracing cases. Contact tracing

changes the relative importance of the most infectious groups more in the SCT-SP model than in the SCT-DI model.
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by group i. Surprisingly, in the SCT-DI model contact tracing has only a slight shift in the relative
impact of the different groups on spreading the epidemic even though there is a huge reduction in
the infected population.
The 5% random screening program has slightly more impact on the SCT-SP model than on the

SCT-DI model. The relative impact plots illustrate that the contact tracing changes the underlying
dynamics of the SCT-SP epidemic. With no intervention program, one third of infections early in
the epidemic are caused by group 1, and most of infections late in the epidemic by group 4.
Contact tracing identifies people before they enter group 4 and therefore group 1 has more relative
impact on the epidemic throughout the epidemic than it does with no control program.
The group causing the most infections can impact which control methods will work best. Be-

cause in the SCT-SP model people stay in group 1 for such a short time, they are hard to detect.
However, by the time they reach group 4, there is a reasonable chance that they know about their
infection. This implies that contact tracing used in conjunction with an early identification pro-
gram, such as a concerted effort to screen people who have early symptoms of infection, may be an
effective intervention program for an SCT-SP epidemic.

5.2. Sensitivity of R0

In Section 4, we determined that R0 decreases for both models as either r or f increases. Thus
the more screening or contact tracing there is, the more slowly the initial epidemic will grow. To
measure the sensitivity of the initial epidemic to the intervention programs, we evaluate R0 using
the baseline parameters given in Table 2, and varying the random screening rate, r, the fraction of
partners traced, f, and the time window for remembering past partners, TM. These results are
shown in Fig. 6. The upper figures show R0 as a function of r for five values of TM, ð0; 0:5; 1;
1:5; 2Þ, and f ¼ 0:5. The lower figures show R0 as a function of f for 5 values of r, (0.0, 0.05, 0.1,
0.15, 0.2), and TM ¼ 1 year.
These figures show that R0 is more sensitive to changes in r than to variations in either f or TM

over their range. As random screening increases, R0 for the SCT-DI model decreases more rapidly
than R0 for the SCT-SP model for the same level of contact tracing. The upper plots show that the
SCT-SP model is less sensitive to TM than the SCT-DI model. For the SCT-DI model at a 10%
screening rate, R0 drops as TM increases crossing threshold conditions (R0 ¼ 1) before TM ¼ 1:5
years. On the other hand, if identified infected people can identify their partners for just one year,
and half of their partners can be traced, then the SCT-DI model goes below threshold when about
12.5% of at risk people are randomly tested.
The lower graphs show that R0 is less sensitive to the fraction of partners traced than to the

random screening rate, and is more sensitive in the SCT-DI model than in the SCT-SP model.
Note that, for the SCT-DI model, R0 drops below threshold on the 10% random screening curve
at f about 0.7, that is, if 70% of the past partners are traced and 10% population randomly
screened, the epidemic is below threshold for the SCT-DI model, while R0 never drops below 1 on
the 10% random screening curve for the SCT-SP model.
Finally, we remark that additional studies have shown that in the SP model, R0 remains in the

range [1.3,1.5] for r ¼ 0:05, f 2 ð0; 1Þ, and TM 2 ð0; 2Þ. In the SCT-DI model, R0 decreases more
rapidly, falling quickly at small values of f and TM, and drops below threshold at larger values of f
and TM.
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5.3. Sensitivity of the endemic equilibrium

We show in Appendix B that when R0 > 1 there exists a unique endemic equilibrium for both
models. We solve for the endemic equilibrium by numerically finding the roots of the algebraic
equilibrium equations defined in Section 4. This is easily accomplished because x in (4.8) and
(4.12) is an increasing function of r, f, and TM. The endemic equilibrium I�i given in (4.7), (4.9) or
(4.10), is a function of r, f, and TM. Changes in these parameters affect I�i as functions of x and
through the values of ai and bi for the SCT-DI model, or the values of Ai and Bi for the SCT-SP

Fig. 6. In the top figures, R0 is plotted as a function of the fraction of the population that is randomly screened for
infection. The different curves illustrate how much greater the impact of contact tracing (f ¼ 0:5) is for the DI model
than the SCT-SP model for TM ¼ 0, 0.5, 1, 1.5, 2. To illustrate the sensitivity of the models to f in the lower figures, we

fix TM ¼ 1 year and plot R0 as a function of the fraction of partners traced, f. The multiple curves illustrate the impact
when the fraction of the population randomly screened is varied, r ¼ 0, 0.05, 0.1, 0.15, 0.2. R0 is reduced more in the
SCT-DI model than in the SCT-SP model as the fraction of partners traced increases.
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model. Because of these complex interrelationships, we investigate the sensitivity of the endemic
equilibrium numerically and illustrate our results in Fig. 7.
In Fig. 7 we see that I� is a decreasing function of all three parameters in the models. Whenever R0

crosses the threshold values R0 ¼ 1, the total number of infected people at the endemic equilibrium
vanishes and the lines on the graph intersect the x-axis. As in our studies of R0, we find that the
contact tracing program has more impact on the SCT-DI model epidemic than the SCT-SP model
epidemic. For example, when f ¼ 0:5 there is a more rapid decrease of I� in the SCT-DI model than
in the SCT-SP model. If there is no contact tracing, (TM ¼ 0), then screening alone has a bigger
impact at slowing the epidemic in the SP model than in the DI model. As TM is increased, the critical
value of r for stopping the epidemic decreases almost twice as fast for the SCT-DI model as for the

Fig. 7. To examine the sensitivity of the endemic equilibria, we plot the total infected population of the SCT-DI and

SCT-SP models at the endemic equilibrium as we vary the fraction of the population randomly screened (r) for 5 values
of TM and f ¼ 0:5, and the fraction of the population traced (f) for 3–4 values of r and TM ¼ 1 year. Notice that in all of
these sensitivity studies, contact tracing has more impact on the endemic equilibrium for the SCT-DI model than for the

SCT-SP model.
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SCT-SP model. There is a similar response to increasing f and r, at fixed TM. If the screening rate is
small and the SCT-DI model holds, a good contact tracing program can bring the epidemic under
control.

5.4. Impact of the discrete approximations in the SCT-SP model

In developing the contact tracing SCT-SP model, we estimated how far back people can
identify their partners. We assumed that the mean time an individual has been in a group is
approximated by the mean time a typical individual stays in a group, �ss0i . We also assumed that we
can use the mean time that people stayed in previous groups to estimate how many past groups a
person in group i can recall their partners from. The first of these approximations ignores vari-
ability in population sizes over time and is exact when the population is at equilibrium. The
second assumption about how to compute averages leads to a possible discontinuity in the SCT-
SP model as the parameter TM changes and the index JðiÞ jumps.
In Fig. 8, we investigate the nature of these jumps and show that they lead to small kinks, but

not discontinuities, in R0 and the endemic equilibrium. Both plots exhibit rapid drops at some TM
between 1.5 and 3 years, but this shift is short-lived, due to the discontinuous change in slope.
Also the kinks occur after the time where most programs stop contact partners, (TM < 1 year).

6. Validity of the model assumptions

To gain insight into the impact of contact tracing in reducing the spread of HIV, and develop a
differential equation model which captures the main effects of such a program, we made a number
of approximations in Section 3. We justified most of these approximations based on the time
scales involved, and the processes of sexual transmission and contact tracing. We now examine
whether our assumptions are valid, and describe how to extend the model to account for a more
complex contact tracing process. Here we develop an expression for one term we neglected, Oi,
and briefly discuss how the approximations to the time spent in each group could be improved
upon. We show that when TM is small, Oi is relatively small compared to the terms Li andMi which
we included in the original model. We also discuss how to replace the approximation for TiðtÞ
used in Section 3 with the true expression for TiðtÞ, and some of the difficulties which would be
encountered in doing so.

6.1. Estimation of Oi

In the SCT models in Section 3, we assumed that Oi was negligible compared to Li and Mi. Oi is
the average number of partners named by a screened infected who became infected between the
time they had contact with that person and the time that person was screened. The combined
events of not becoming infected by their contact with one person, and then subsequently having
contact with other infected people and becoming infected by one of them, would be, in general,
fairly rare events. However, in our simulations we are dealing with a population with 5 new
partners per year, and a high level of infections. It is possible that under different assumptions the
term Oi may have a significant impact on the model behavior.
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6.1.1. OiðtÞ for the SCT-DI model
Recall that TiðtÞ is the mean time that an infected person in group Ii has been in that group, andeTTiðtÞ ¼ minfTM; TiðtÞg is the minimum of the time the person is asked about and the time he has

been infected. The average number of susceptible people a screened infected person from the
group had contact with in the past eTTiðtÞ years, but did not infect, is then

Fig. 8. To examine the impact of the discontinuity in the parameter TM that is introduced into the SCT-SP model by the
model approximations and the structure of the SCT-SP model, we plot R0 and the total number of infecteds at equi-
librium as a function of TM for different values of r. We see that in fact these quantities are continuous in TM. There is a
discontinuity in their slopes for TM between 1.5 and 3 years, but the drops are small, and the curves quickly return to
their former behavior.
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rð1� biÞ
Z t

t�eTTiðtÞ

SðsÞ
NðsÞ ds:

Since the contact with a susceptible occurred at time s in this integral, after time s the probability
that the susceptible becomes infected before time t is

r
Xn

j¼1
bj

Z t

s

IjðsÞ
NðsÞ ds:

Thus

OiðtÞ ¼ rð1� biÞ
Z t

t�eTTiðtÞ

SðsÞ
NðsÞ r

Xn

j¼1
bj

Z t

s

IjðsÞ
NðsÞ dsds:

Just as in the original SCT models, we make the simplifying assumption that S and N can be
approximated by their time t values for the length of time eTTiðtÞ, giving

OiðtÞ 	 r2ð1� biÞ
eTT 2i SðtÞ
2N 2ðtÞ

Xn

j¼1
bjIjðtÞ: ð6:1Þ

Splitting this into two factors, as we did with Mi, we have

OiðtÞ 	
1

2
kðtÞ rSðtÞ

NðtÞ /i ð6:2Þ

where /i ¼ ð1� biÞeTT 2i .
6.1.2. Oi(t) for the SCT-SP model

The expression for OiðtÞ in the SCT-SP model is very similar to the integral expression given
above for the SCT-DI model. The only difference is that, since the screened infecteds have po-
tentially gone through previous stages of the disease, their infectivity may have changed, and thus
bi becomes a function of s and must be integrated. This gives

OiðtÞ 	 r
Z t

t�eTTiðtÞ
ð1� bðsÞÞ SðsÞ

NðsÞ r
Xn

j¼1
bj

Z t

s

IjðsÞ
NðsÞ dsds:

Again, making the approximations that the populations have reached their t values over the
course of this integral, we have

OiðtÞ 	
1

2
kðtÞ rSðtÞ

NðtÞ /i;

where

/i ¼
Z t

t�eTTiðtÞ
ð1� bðsÞÞ

Z t

s
ds:

We estimate /i for different groups as follows:
For group 1, since screened infecteds from group I1 have only entered one group after becoming

infected, the estimation of /1 is the same procedure as for the DI model, giving

/1ðtÞ 	 ð1� b1ÞeTT 21 :
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For the remaining groups (i > 1), we again consider the three possible cases, and do a similar
set of approximations as we did for ai in Section 3.2.

Case 1. JðiÞ ¼ i and TM6 �ssi.
In this case, the average infected person arrived in their current infected group so long ago that

they cannot identify partners they had while they were in a previous group. Then

/i 	 ð1� biÞT 2M:
Case 2. 16 JðiÞ < i.
In this case, TM is longer than the time people have been in group Ii, but shorter than the

average time they have been infected. Let bðuÞ be the infectiousness that the �index case�, who is
now in group Ii, used to have at the previous time u. Then, since we trace back in the time interval
the index case can recall, bðuÞ goes backwards with bð0Þ ¼ bi and bðTMÞ ¼ bJðiÞ. Note that this is a
further approximation. To do this exactly we would have to reframe the infected population in
terms of a time since infection. However, this estimate is adequate for our purposes here. Then

/i ¼ 2
Z t

t�TM

ð1� bðt � sÞÞ
Z t

s
dsds

¼ ð1� biÞ�ss2i þ
Xi�1

k¼JðiÞþ1
ð1� bkÞ �ssi

 0@ þ
Xi�1
l¼k

1

cl

!2
� �ssi

 
þ
Xi�1
l¼kþ1

1

cl

!21A
þ 1
�

� bJðiÞ

	
�ssi

 0@ þ
Xi�1

l¼JðiÞþ1

1

cl
þ tMJðiÞ

!2
� �ssi

 
þ

Xi�1
l¼JðiÞþ1

1

cl

!21A
Using the Gi;k defined in Section 3.2, we can simplify this expression as

/i ¼ ð1� biÞ�ss2i þ
Xi�1

k¼JðiÞþ1
ð1� bkÞðG2k;i � G2kþ1;iÞ þ 1

�
� bJðiÞ

	
ðT 2M � G2JðiÞþ1;iÞ:

Case 3. JðiÞ ¼ 0.
In this case, TM is longer than the time the infected people have been infected. The identified

infecteds can identify all of their partners since they have been infected. As a result

/i ¼ ð1� biÞ�ss2i þ
Xi�1
k¼1

ð1� bkÞ �ssi

 0@ þ
Xi�1
l¼k

1

cl

!2
� �ssi

 
þ
Xi�1
l¼kþ1

1

cl

!21A;

or

/i ¼ ð1� biÞ�ss2i þ
Xi�1
k¼1

ð1� bkÞðG2k;i � G2kþ1;iÞ:

Notice that all Oi are positive terms. They would increase the impact of contact tracing.
However, as shown in Fig. 9 including these terms has only a small effect. So long as TM is within
the realm of most programs, i.e. one year or less, the most we may possibly lose would be about
5% of the effect of the total program. Thus, it is reasonable to neglect them in our model for-
mulation unless we wish to study a population with a longer TM.
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Note also that all Oi include a factor of k, and thus are zero at the infection-free equilibrium.
This implies that they do not affect the reproductive number, although they do shift the endemic
equilibrium values.

6.2. Estimation of Ti(t)

The second approximation we examine is the one we made for the mean time that an infected
person has been in their current group, TiðtÞ. This was estimated by �ss0i ¼ ðl þ mi þ r þ frC0i Þ

�1
for

Fig. 9. This shows
P4

i¼1 Oi=
P4

i¼1 Ci as computed at the equilibrium values from the models without Oi (i.e. the models

used in Section 3). We see that for TM ¼ 2 years, this quantity is larger than 0.1 in the worst case for both models,
showing that for extremely large TM > 2, the actual impact of contact tracing may be as much as 10% greater than our
model predicts. However, for more realistic values of TM (1 year or less), these terms remain relatively small, and we are
justified in neglecting them.
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the SCT-DI model, and by the same formula with mi replaced by ci for the SCT-SP model, where it
appears as s0i throughout our formulas. To accurately determine these quantities would require
adding another variable to our model: the time since the person entered their current group. This
would then turn the differential equations for the infected populations into partial differential
equations. If s is the new variable indicating the duration of time since the person entered infected
group i, the infecteds become functions of two variables, t and s, such as Ii ¼ Iiðt; sÞ. Then,

TiðtÞ ¼
Z 1

0

sIiðt; sÞds
Z 1

0

Iiðt; sÞds
� �1

:

Because the rate of leaving the infected populations contains the term CiðtÞ, the full model leads to
an integro-partial-differential equation model, and its mathematical analysis becomes much more
complicated. Such a model is beyond the scope of this paper.
However, because the estimate we have chosen at the infection-free equilibrium is valid, the

estimate at the endemic equilibrium for Ti would have the same formula, with Cið0Þ replaced by its
value at the endemic equilibrium. Numerical studies have shown that replacing Cið0Þ in the
formula for TiðtÞ by CiðtÞ only affects results by less that 1%. Nevertheless, the case where using the
actual formula for Ti could potentially have a large effect is in the early epidemic when people have
only been infected a short period of time. Thus, in this early epidemic, Ti is much smaller than s0i ,
is increasing rapidly, and will depend greatly upon assumptions about the initial distribution of
infections in s.

7. Summary and conclusions

We have investigated how mathematical models can help predict the effectiveness of control
measures on the spread of HIV and other STDs. We studied the impact of random screening and
contact tracing within the context of two HIV transmission models. In the DI model the infected
population is divided into groups according to their infectiousness, and HIV is primarily spread
by a small highly infectious group of superspreaders. Random screening alone reduces the impact
of the epidemic a small amount for this model, while contact tracing slows the epidemic signifi-
cantly by identifying the superspreaders. In the SP model an infected individual goes through a
series of infection stages, and the virus is primarily spread by individuals in an initial highly in-
fectious stage or in the late stages of the infection. In the SP model we find that adding contact
tracing to random screening causes only a small decrease in infections compared to the decrease
obtained by adding random screening to the uncontrolled epidemic. This occurs because contact
tracing cannot identify very many of the people in the very short, initial, most infectious period.
Thus the effectiveness of the intervention strategy strongly depends on the underlying etiology of
the disease transmission.
While the terms that account for random screening are easily included in models of disease

transmission, it is not obvious how to account for contact tracing. At first glance it would appear
that, because contact tracing involves identifying events which occurred in the past, a model that
includes it would contain nested integrals over the past. These integrals would be analytically
intractable. However, by making a few simplifying but reasonable assumptions, we showed that
these integrals could be approximated by functions which do not depend upon the past. This
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allowed us to derive differential equation models directly from the epidemiology of the disease.
These models have the advantage that we are able to determine analytical formulas for the re-
productive numbers and endemic equilibria, and use those formulas to quickly gain insight into
how effective contact tracing would be as part of an intervention program.
Using our results on the reproductive number and endemic equilibrium, we analyzed the impact

of various levels of intervention programs on the early epidemic and the endemic equilibrium. We
simulated the time evolution of several scenarios, and examined the effectiveness of contact
tracing in identifying the most infectious group transmitting the infection. These studies led us to
the following conclusions:

• Random screening and contact tracing can be included in simple STD differential equation
transmission models.

• Contact tracing is most effective when there are core groups of individuals, remaining in the
high risk population for long periods of time, that are transmitting the majority of the infec-
tions (as in the DI model).

• Random screening plus contact tracing is only slightly more effective than random screening
alone when a large fraction of the infections are transmitted by individuals in a short, highly
infectious, early stage within the disease progression (as in the SP model).

• When using models to guide intervention strategies, the underlying eitiology of the disease
transmission must be captured by the model before it can be used to estimate the impact of
the intervention on the epidemic.

The insights gained by any model are only as valid as the quality of the approximations and
assumptions which go into developing the model. This is particularly true when modeling a
complex situation, such as contact tracing. In order to investigate the validity of our model, we
have, in Section 6, obtained expressions for the two most important terms that we neglected in the
model development, and shown that, under realistic parameter estimates, one of these terms is
indeed small compared to the one we kept.
We have described how mathematical models based on the transmission mechanisms of HIV

can help the scientific community evaluate the potential effectiveness of different approaches for
bringing an epidemic under control. It would be possible for public health officials or economists
to add dollar amounts to various levels of screening and contact tracing in a particular popula-
tion, and estimate the cost of reducing the epidemic to certain levels using these two models.
However, we caution that one must be careful about making policy recommendations based

upon a single model until results have been validated via other modeling approaches or field
studies, especially for something as important and politically volatile as methods for controlling
the spread of HIV. The models formulation and analysis in this paper are only a preliminary study
in this direction. Before any conclusions can be applied to a real-world setting, the model should
account for variations in sexual behavior and in mixing patterns to our model. Results should also
be directly compared with those from individual agent-based models. Individual agent based
models for contact-tracing are based on different assumptions than differential-equation models,
and may lead to different conclusions. Although it is difficult to derive analytical expressions for
threshold conditions and equilibria for agent-based models, and the models require many simu-
lations in order to obtain the distribution for each set of parameter values, the agent-based models
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have the advantage that they can account exactly for the history of contacts between any two
individuals. Therefore, it is important to study the impact of contact tracing using a variety of
techniques, and this may lead to a more complete understanding of the spread of HIV and the
effects of random screening and contact tracing on that spread under different conditions.
Although we have separated the DI and SP mechanisms in order to understand each of their

roles, it appears from the data that HIV infected people both go through stages and have different
individual levels of virus during the chronic infection stage. The real model should be a combined
DI and SP model, which we will study in a future paper. Thus these insights are just one step in
improving our understanding of the essential relationships between the social and biological
mechanisms that influence the spread of the disease and can help set priorities in research, saving
time, resources, and lives.

Appendix A. The reproductive number

We define the reproductive number R0 such that the infection-free equilibrium is asymptotically
stable if R0 < 1 and is unstable if R0 > 1.

A.1. R0 for the SCT-DI model

The Jacobian of the contact tracing DI model (3.1) at the infection-free equilibrium can be
written in the form

�l � 0

0 JDI 0

0 � D1

0@ 1A; ðA:1Þ

where

D1 ¼ diagð�ðl þ m1Þ; . . . ;�ðl þ mnÞÞ;
and

JDI ¼

p1rb1 � d1 p1rb2 � � � p1rbn

p2rb1 p2rb2 � d2 � � � p2rbn

..

. ..
. . .

. ..
.

pnrb1 pnrb2 � � � pnrbn � dn

0BBB@
1CCCA; ðA:2Þ

with di ¼ l þ mi þ r þ frM0
i ¼ 1=s0i . Here M0

i ¼ reTTibi is Mi in (3.7) evaluated at the infection-free
equilibrium. Because all of the entries of the diagonal submatrix D1 are negative, the stability of
(A.1) is determined by JDI.
Using the same approach as in [8] to analyze the matrix JDI , it is a straightforward calculation

to obtain the reproductive number

RD0 ¼ r
Xn

i¼1

pibi

di
¼ r

Xn

i¼1
pibis

0
i ðA:3Þ

for the DI model.
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A.2. R0 for the SCT-SP model

The Jacobian at the infection-free equilibrium for the contact tracing SP model (3.2) can also be
written in the form

�l � 0

0 JSP 0

0 � D2

0@ 1A; ðA:4Þ

where

D2 ¼ diagð�ðl þ c1Þ; . . . ;�ðl þ cnÞÞ;
and

JSP ¼

rb1 � d1 rb2 rb3 � � � rbn�1 rbn

c1 �d2 0 � � � 0 0

0 c2 �d3 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � cn�1 �dn

0BBBBB@

1CCCCCA; ðA:5Þ

with di ¼ l þ ci þ r þ frM0
i ¼ 1=s0i and M0

i being Mi for the SP model evaluated at the infection-
free equilibrium. Again, the stability of (A.4) is determined by that of matrix JSP in (A.5).
Using a similar approach as in the derivation of R0 for the SP model in [8] we can express the

reproductive number for (3.2) as

RS0 ¼ r
Xn

i¼1

biqi

di
¼ r

Xn

i¼1
qibis

0
i ; ðA:6Þ

where

qi :¼
Yi�1
j¼1

cjs
0
i : ðA:7Þ

Note that M0
i depends on how far back people can identify their partners. If TM is small and a

typical infected person can only identify partners from their current infection stage (JðiÞ ¼ i) and
TM < 1=ðl þ ciÞ, then M0

i ¼ rTMbi and

RS0 ¼ r
Xn

i¼1

qibi

l þ ci þ r þ frrTMbi
;

where

qi :¼
Yi�1
j¼1

cj

l þ cj þ r þ frrTMbj
:

At the other extreme if TM is large and a typical infected person can identify all their partners,
then

M0
i ¼ r

Xi�1
k¼1

bk

ck

 
þ bi

l þ ci

!
;

J.M. Hyman et al. / Mathematical Biosciences 181 (2003) 17–54 49



and

RS0 ¼ r
Xn

i¼1

qibi

l þ ci þ r þ frr
Pi�1

k¼1
bk
ck
þ bi

lþci

� 	 ;
where

qi ¼
Yi�1
j¼1

cj

l þ cj þ r þ frr
Pi�1

k¼1
bk
ck
þ bi

lþci

� 	 :

Appendix B. The endemic equilibrium

We now show that when R0 > 1 both the models have a unique non-zero endemic equilibrium
and derive a single equation for the equilibrium of each model that can be easily solved nu-
merically.

B.1. The endemic equilibrium for the SCT-DI model

We now show there exists a unique endemic equilibrium when the infection-free equilibrium is
unstable (R0 > 1). The endemic equilibrium for (3.1) satisfies the equation:

pikS� ¼ ðl þ mi þ r þ frðLi þ MiÞÞI�i ¼ l

 
þ mi þ r þ fr

rTMI�

N �

 
þ reTTibiS

�

N �

!!
I�i

¼ l

�
þ mi þ r þ fr rTM 1

��
� S�

N �


þ reTTibi

S�

N �


I�i :¼ ai

�
þ bi

S�

N �


I�i ; ðB:1Þ

where ai ¼ l þ mi þ r þ rfrTM, bi ¼ frrðeTTibi � TMÞ. Hence,

I�i ¼ pikS�

ai þ bi
S�
N�
;

which gives

k� ¼ r
Xn

i¼1

biI
�
i

N � ¼ r
Xn

i¼1

bipik
�S�

N � ai þ bi
S�
N�

� � :
That is,

1 ¼ r
S�

N �

Xn

i¼1

bipi

ai þ bi
S�
N�
: ðB:2Þ

The fraction of the population that is susceptible at the equilibrium as x :¼ S�=N � 2 ð0; 1Þ is
used as a variable to define the function

HDðxÞ :¼ r
Xn

i¼1

bipi
ai
x þ bi

� 1; ðB:3Þ
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where HDðxÞ ¼ 0 at the equilibrium. Because HDðxÞ is an increasing function, limx!0HDðxÞ ¼ �1,
and

lim
x!1

HDðxÞ ¼ r
Xn

i¼1

bipi

ai þ bi
¼ r

Xn

i¼1

bipi

l þ mi þ r þ frreTTibi

¼ R0 � 1;

there exists a unique solution of HDðx̂xÞ ¼ 0 for x̂x 2 ð0; 1Þ, if and only if R0 > 1.
Combining the equilibrium equation for (3.1), lðS0 � S�Þ ¼ k�S�, and (B.1) we have

I�i ¼ pi

ai þ bix̂x
lðS0 � S�Þ: ðB:4Þ

Hence,Xn

i¼1
I�i ¼ lðS0 � S�Þ

Xn

i¼1

pi

ai þ bix̂x
¼ lðS0 � S�ÞGðx̂xÞ;

where Gðx̂xÞ :¼
Pn

i¼1
pi

aiþbix̂x
.

Define the function F ðx̂xÞ :¼ r
Pn

i¼1 bipi=ðai þ bix̂xÞ of the equilibrium solution x̂x and note that
N � ¼ S�F ðx̂xÞ. Therefore,

S� þ lðS0 � S�ÞGðx̂xÞ ¼ S�F ðx̂xÞ; ðB:5Þ
or

S� ¼ lGðx̂xÞ
lGðx̂xÞ þ F ðx̂xÞ � 1 S

0: ðB:6Þ

From (B.5) it also follows that

lðS0 � S�Þ ¼ F ðx̂xÞ � 1
Gðx̂xÞ S�: ðB:7Þ

Substituting (B.7) into (B.4) gives

I�i ¼ piðF ðx̂xÞ � 1Þ
ðai þ bix̂xÞGðx̂xÞ

S� ¼ lpiðF ðx̂xÞ � 1Þ
ðai þ bix̂xÞðlGðx̂xÞ þ F ðx̂xÞ � 1Þ S

0: ðB:8Þ

Because F ðx̂xÞ ¼ 1=x̂x > 1 and (B.5) we can conclude that S� > 0 and I�i > 0.

B.2. The endemic equilibrium for the SCT-SP model

The equilibrium equations for the SP model (3.2),

kS� ¼ ðc1 þ l þ r þ frðL1 þ M1ÞÞI�1
ci�1I

�
i�1 ¼ ðci þ l þ r þ frðLi þ MiÞÞI�i ; 26 i6 n;

can be combined to give the conditions

kS� ¼ A1

�
þ B1

S�

N �


I�1 ; ðB:9Þ
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and

I�i�1 ¼ Ai

�
þ Bi

S�

N �


I�i ; i ¼ 1; . . . ; n � 1: ðB:10Þ

That is,

I�i ¼
Yn
j¼iþ1

Aj

�
þ Bj

S�

N �


I�n ; i ¼ 1; � � � ; n� 1; ðB:11Þ

where Ai ¼ ðci þ l þ r þ frrTMÞ=ci�1, Bi ¼ frrðJMi � TMÞ=ci�1, with c0 ¼ 1 and JMi are given by
(4.13).
Substituting k and (B.11) into (B.9) then leads to

r
S�

N �

Xn

i¼1
bi

Yn
j¼iþ1

Aj

� 
þ Bj

S�

N �

!
¼
Yn
j¼1

Aj

�
þ Bj

S�

N �


: ðB:12Þ

Defining x :¼ S�=N � and dividing (B.12) by the right-hand side, we obtain

HSðxÞ :¼ rx
Xn

i¼1

biQi
j¼1ðAj þ BjxÞ

� 1 ¼ 0: ðB:13Þ

The two end limits are limx!0HSðxÞ ¼ �1 and

lim
x!1

HSðxÞ ¼ r
Xn

i¼1

biQi
j¼1ðAj þ BjÞ

� 1 ¼ R0 � 1:

Therefore, if R0 > 1, there exists a solution ~xx 2 ð0; 1Þ of (B.13) and the solution is unique if the
derivative of HSðxÞ is positive.
The derivative of HSðxÞ is given by

H 0
SðxÞ ¼ r

Xn

i¼1

biQi
j¼1ðAj þ BjxÞ

 
� x

Xn

i¼1

biQi
j¼1ðAj þ BjxÞ

Xi

j¼1

Bj

Aj þ Bjx

!

¼ r
Xn

i¼1

biQi
j¼1ðAj þ BjxÞ

1

 
�
Xi

j¼1

Bjx
Aj þ Bjx

!
: ðB:14Þ

It follows from (3.9)–(3.12) that JMi 6 TM for all three cases of JðiÞ. Then, Bj 6 0 for all j, and
Aj þ Bjx > 0 for x 2 ð0; 1Þ. Hence H 0

SðxÞ > 0, which ensures the uniqueness of the endemic equi-
librium.
To solve for I�, note that substituting ~xx into (B.11) yields

I�i ¼
Yn
j¼iþ1

Aj

�
þ Bjx

�
I�n ; i ¼ 1; . . . ; n� 1: ðB:15Þ

It follows from S� ¼ xN � ¼ xðS� þ
Pn

i¼1 I
�
i Þ that

S� ¼
Pn

i¼1 I
�
i

1=~xx� 1 ¼
Pn

i¼1
Qn

j¼iþ1 Aj þ Bj~xx
� 	

1=~xx� 1 I�n : ðB:16Þ

52 J.M. Hyman et al. / Mathematical Biosciences 181 (2003) 17–54



Combining the equilibrium equation (3.2) for S with (B.9) and (B.15) yields

lðS0 � S�Þ ¼ kS� ¼ ðA1 þ B1~xxÞI�1 ¼
Yn
j¼1

Aj

�
þ Bj~xx

	
I�n ;

which when combined with (B.16) gives

lS0 ¼ l

Pn
i¼1
Qn

j¼iþ1 Aj þ Bj~xx
� 	

1=~xx � 1

0@ þ
Yn
j¼1

Aj

�
þ Bj~xx

	1AI�n :

Solving this equation for I�n gives

I�n ¼ lS0

l

Pn

i¼1

Qn

j¼iþ1
AjþBj~xxð Þ

1=~xx�1 þ
Qn

j¼1 Aj þ Bj~xx
� 	�  : ðB:17Þ

and substituting this into (B.11) and (B.16) then completely solves for S� and I�i , i ¼ 1; . . . ; n.
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